Accuracy

MINOTAUR: A Posit-Based 0.42–0.50-TOPS/W Edge Transformer Inference and Training Accelerator

MINOTAUR: A Posit-Based 0.42–0.50-TOPS/W Edge Transformer Inference and Training Accelerator 150 150

Abstract:

Transformer models have revolutionized natural language processing (NLP) and enabled many new applications, but are challenging to deploy on resource-constrained edge devices due to their high computation and memory demands. We present MINOTAUR, an edge system-on-chip (SoC) for inference and fine-tuning of Transformer models with all memory on the chip. …

View on IEEE Xplore

Device Nonideality-Aware Compute-in-Memory Array Architecting: Direct Voltage Sensing, I–V Symmetric Bitcell, and Padding Array

Device Nonideality-Aware Compute-in-Memory Array Architecting: Direct Voltage Sensing, I–V Symmetric Bitcell, and Padding Array 150 150

Abstract:

A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfully fabricated, with the bidirectional operation enabled by the symmetric bitcell structure. By padding the weight sum to a global value for all bit lines (BLs), …

View on IEEE Xplore