Vectors

MINOTAUR: A Posit-Based 0.42–0.50-TOPS/W Edge Transformer Inference and Training Accelerator

MINOTAUR: A Posit-Based 0.42–0.50-TOPS/W Edge Transformer Inference and Training Accelerator 150 150

Abstract:

Transformer models have revolutionized natural language processing (NLP) and enabled many new applications, but are challenging to deploy on resource-constrained edge devices due to their high computation and memory demands. We present MINOTAUR, an edge system-on-chip (SoC) for inference and fine-tuning of Transformer models with all memory on the chip. …

View on IEEE Xplore

Cryogenic Hyperdimensional In-Memory Computing Using Ferroelectric TCAM

Cryogenic Hyperdimensional In-Memory Computing Using Ferroelectric TCAM 150 150

Abstract:

Cryogenic operations of electronics present a significant step forward to achieve huge demand of in-memory computing (IMC) for high-performance computing, quantum computing, and military applications. Ferroelectric (FE) is a promising candidate to develop the complementary metal oxide semiconductor (CMOS)-compatible nonvolatile memories. Hence, in this work, we investigate the effectiveness …

View on IEEE Xplore