Tunneling

Source Design of Vertical III–V Nanowire Tunnel Field-Effect Transistors

Source Design of Vertical III–V Nanowire Tunnel Field-Effect Transistors 150 150

Abstract:

We systematically fabricate devices and analyze data for vertical InAs/(In)GaAsSb nanowire tunnel field-effect transistors (TFETs), to study the influence of source dopant position and level on their device performance. The results show that delaying the introduction of dopants further in the GaAsSb source segments improved the transistor metrics (…

View on IEEE Xplore

HamFET: A High-Performance Subthermionic Transistor Through Incorporating Hybrid Switching Mechanism

HamFET: A High-Performance Subthermionic Transistor Through Incorporating Hybrid Switching Mechanism 150 150

Abstract:

Field-effect transistors (FETs) switched by quantum band-to-band tunneling (BTBT) mechanism, rather than conventional thermionic emission mechanism, are emerging as an exciting device candidate for future ultralow-power electronics due to their exceptional electronic properties of subthermionic subthreshold swing. However, fundamental limitations in drive current have hindered such technology encountering for high-performance …

View on IEEE Xplore