microscaling (MX)

A Microscaling Multi-Mode Gain-Cell Computing-in-Memory Macro for Advanced AI Edge Device

A Microscaling Multi-Mode Gain-Cell Computing-in-Memory Macro for Advanced AI Edge Device 150 150

Abstract:

The microscaling (MX) format is an emerging data representation that quantizes high-bitwidth floating-point (FP) values into low-bitwidth FP-like values with a shared-scale (SS) exponent. When implemented with computing-in-memory (CIM), MX allows an attractive tradeoff between accuracy and hardware efficiency for specific neural network (NN) workloads. This work presents the first …

View on IEEE Xplore