inference

Energy-Efficient Reconfigurable XGBoost Inference Accelerator With Modular Unit Trees via Selective Node Execution and Data Movement

Energy-Efficient Reconfigurable XGBoost Inference Accelerator With Modular Unit Trees via Selective Node Execution and Data Movement 150 150

Abstract:

The extreme gradient boosting (XGBoost) has emerged as a powerful AI algorithm, achieving high accuracy and winning multiple Kaggle competitions in various tasks including medical diagnosis, recommendation systems, and autonomous driving. It has great potential for running on edge devices due to its binary tree-based simple computing kernel, offering unique …

View on IEEE Xplore

MINOTAUR: A Posit-Based 0.42–0.50-TOPS/W Edge Transformer Inference and Training Accelerator

MINOTAUR: A Posit-Based 0.42–0.50-TOPS/W Edge Transformer Inference and Training Accelerator 150 150

Abstract:

Transformer models have revolutionized natural language processing (NLP) and enabled many new applications, but are challenging to deploy on resource-constrained edge devices due to their high computation and memory demands. We present MINOTAUR, an edge system-on-chip (SoC) for inference and fine-tuning of Transformer models with all memory on the chip. …

View on IEEE Xplore