Graphene

Integrating Atomistic Insights With Circuit Simulations via Transformer-Driven Symbolic Regression

Integrating Atomistic Insights With Circuit Simulations via Transformer-Driven Symbolic Regression 150 150

Abstract:

This article introduces a framework that establishes a cohesive link between the first principles-based simulations and circuit-level analyses using a machine learning-based compact modeling platform. Starting with atomistic simulations, the framework examines the microscopic details of material behavior, forming the foundation for later stages. The generated datasets, with molecular insights, …

View on IEEE Xplore