Abstract:
Ferroelectric random access memory (FeRAM) is a promising candidate for energy-efficient nonvolatile memory, particularly for logic-in-memory and compute-in-memory (CIM) applications. Among the available cell architectures, One-Transistor–n-Capacitor (1T-nC) and two-transistor–n-capacitor (2T-nC) FeRAMs each offer distinct trade-offs in density, scalability, and reliability. In this work, we present a comparative study …