Ferroelectric films

Understanding Reliability Trade-Offs in 1T-nC and 2T-nC FeRAM Designs

Understanding Reliability Trade-Offs in 1T-nC and 2T-nC FeRAM Designs 150 150

Abstract:

Ferroelectric random access memory (FeRAM) is a promising candidate for energy-efficient nonvolatile memory, particularly for logic-in-memory and compute-in-memory (CIM) applications. Among the available cell architectures, One-Transistor–n-Capacitor (1T-nC) and two-transistor–n-capacitor (2T-nC) FeRAMs each offer distinct trade-offs in density, scalability, and reliability. In this work, we present a comparative study …

View on IEEE Xplore

Benchmarking of FERAM-Based Memory System by Optimizing Ferroelectric Device Model

Benchmarking of FERAM-Based Memory System by Optimizing Ferroelectric Device Model 150 150

Abstract:

We present a framework for design technology co-optimization (DTCO) of the main memory system with one transistor-one capacitor (1T1C) ferroelectric random access memory (FERAM) as an alternative to dynamic random access memory (DRAM). We start with the ferroelectric capacitor device model and perform array-level memory circuit simulation. Then, we …

View on IEEE Xplore