Computing-in-memory (CIM)

A 28-nm 64-kb 31.6-TFLOPS/W Digital-Domain Floating-Point-Computing-Unit and Double-Bit 6T-SRAM Computing-in-Memory Macro for Floating-Point CNNs

A 28-nm 64-kb 31.6-TFLOPS/W Digital-Domain Floating-Point-Computing-Unit and Double-Bit 6T-SRAM Computing-in-Memory Macro for Floating-Point CNNs 150 150

Abstract:

With the rapid advancement of artificial intelligence (AI), computing-in-memory (CIM) structure is proposed to improve energy efficiency (EF). However, previous CIMs often rely on INT8 data types, which pose challenges when addressing more complex networks, larger datasets, and increasingly intricate tasks. This work presents a double-bit 6T static random-access memory (…

View on IEEE Xplore