1.58-b FeFET-Based Ternary Neural Networks: Achieving Robust Compute-In-Memory With Weight-Input Transformations https://sscs.ieee.org/wp-content/themes/movedo/images/empty/thumbnail.jpg 150 150 https://secure.gravatar.com/avatar/8fcdccb598784519a6037b6f80b02dee03caa773fc8d223c13bfce179d70f915?s=96&d=mm&r=g
Abstract:
Ternary weight neural networks (TWNs), with weights quantized to three states (−1, 0, and 1), have emerged as promising solutions for resource-constrained edge artificial intelligence (AI) platforms due to their high energy efficiency with acceptable inference accuracy. Further energy savings can be achieved with TWN accelerators utilizing techniques such as compute-in-memory (CiM) and …