Special Topic on Cryogenic Semiconductor Devices and Circuits for Computing




IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Cryogenic Semiconductor Devices and Circuits for Computing


Guest Editor

Victor Zhirnov, Semiconductor Research Corporation, zhirnov@src.org


Azad Naeemi, Georgia Institute of Technology, azad@gatech.edu



Aims and Scope

Cryogenic semiconductor electronics is expected to have a re-birth due to advances in quantum computing, medical and scientific instrumentation, aviation, space exploration, etc. Emerging materials and physics can be leveraged for new cryogenic device-inherent behavior that can have system-level benefits. Cryogenic semiconductor devices including transistors, emerging resistive memories, and other device types as the basis, can innovate the entire computing stack from materials to systems and thus re-define how computation can be done. Looking forward, the realm of cryogenic electronics is inspired by the new and continually emerging understanding of cryogenic semiconductor physics applications.


This call for papers is on emerging cryogenic semiconductior devices and circuits for high performance computation. The focus and emphasis of these special topic papers is beyond Josephson junctions based devices and circuits; such as single flux quantum (SFQ), etc. Some example topics of interest include cryogenic memories, short-range and long-range connectivity in the devices and circuits, etc. Papers are encouraged that address new emerging functionality at cryogenic temperatures at all levels (materials, device, circuits, and systems), including showing at a system level how such advanced functions can be useful for computing tasks and understanding the system-level energy efficiency and speed.

Topics of Interest

  • CryoCMOS
  • Physics of operation and device/circuit performance of different semiconductor materials at cryogenic temperatures: Si, Ge, GaN, SiC, III-V etc.
  • The potential of operation at cryogenic temperatures  for emerging materials such as carbon nanotubes, graphene, ferroelectrics etc.
  • Memory operation at cryogenic temperatures, including: DRAM, floating gate/charge trapping, and emerging memories (e.g. MRAM, RRAM, PCM, FeFETs, etc)
  • Analog, digital electronics circuits for general purpose computing, graphics and AI.
  • Short- and long-range connectivity in cryogenic devices and circuits
  • System-circuit-device co-design for cryogenic semiconductor electronics
  • Prototypes, simulation, and theory all welcome


Important Dates

Open for Submission: Aug. 1st, 2021
Submission Deadline: Oct. 1st, 2021
First Notification: Nov. 1st, 2021
Revision Submission: Nov. 15th, 2021
Final Decision: Dec. 1st, 2021
Publication Online: Dec. 15th, 2021


Submission Guidelines

The IEEE Journal on Exploratory Solid-State Computational Devices and Circuits (JXCDC) IS AN OPEN ACCESS ONLY PUBLICATION: Charge for Authors: $1,350 USD per paper. Paper submissions must be done through the ScholarOne Manuscripts website: https://mc.manuscriptcentral.com/jxcdc



Guidelines for papers and supplementary materials, as well as a paper template, are provided at this website

Inquiries for the JxCDC Journal should be sent to: JXCDC@IEEE.ORG


JxCDC is sponsored by:

  • Solid-State Circuits Society
  • Circuits & Systems Society
  • Council on Elect. Design Automation
  • Council on Superconductivity
  • Magnetics Society
  • Electron Devices Society



Paper Format Description:

Papers can have 2 parts – the first part is a 4-8 page main paper (following a strict format – template available from website), and the second part is the supplementary material. The main paper itself will just focus on describing why the work is important, the state of the prior art, the key new accomplishment(s) or results, and then what the research directions are going forward. The main paper can have an accompanying supplementary material (detailed methods) part. The supplementary material is not mandatory, but authors are strongly encouraged to submit supplementary material, which will increase the chance of acceptance. The Supplementary material (detailed methods) will be peer reviewed along with the main paper.


Style guidelines for the main paper:

The main report (min. of 4, max. of 8) is written in format of a letter. Due to their letter nature, the research must be original and must be of interest to research scientists/engineers and industry in related fields.


Abstract guidelines:

The report begins with a fully referenced paragraph, ideally 200 words aimed at readers in the general area of engineering and physical sciences. The references must be up-to-date (e.g. referring to the best available materials, devices, circuits) & convey the relevance and originality of the research. This paragraph starts with a 3-4 sentence basic introduction to the problem area explaining the relevance and the issues. This is followed by a one-sentence statement of the main conclusions (e.g. 'Here we show' or equivalent phrase); and finally, 2-3 sentences putting the main findings into general context so it is clear how the results described in the paper have moved the field forwards.



The text of the article must be succinct and start with general audience and progressively increase the complexity for experts. The body of the main paper must provide clear context to the present work based on established industry roadmaps, figures of merit or generally accredited framework (computational throughputs, leakage power, long form Reviews of Modern physics, IEEE proceedings, Nobel lectures). To enable the comparison it is encouraged that key quantitative findings of the paper are compared in a table with current references. Any concluding statements at the end of the article must be short since key conclusion is clearly articulated at the introduction. A repetition of the conclusions in the abstract should be avoided. Concluding statements explaining future possibilities or evolution are encouraged.


Style guidelines for supplementary material (methods paper):

The supplementary material is a unique format to encourage complete and clear communication of the relevant information to the experts in the area, while providing a citable source for the students for the innovations in scientific method: processing, modeling and theory. Long form derivations and code submissions are encouraged for theoretical and modeling papers. Modeling papers could for example provide all relevant data (not necessarily the code but they could) required to reproduce or validate the results. The JxCDC encourages the authors to put the experimental details such as fabrication methods, detailed characterizations, models or simulation methods (if it is a theory paper). The supplementary information therefore documents innovations in the experimental and modeling scientific methods, e.g. an innovative process technique to avoid interface effects, newly adopted differential equation solvers or innovative developments in device/circuit analysis can be included (and students/researchers will have a citable source online). Background materials that help the reader can be referenced in the supplemental material.

The supplementary material part begins with an unreferenced abstract (typically 150 words) and is divided into separate sections for introduction, results, discussion and methods. Introduction and discussion are brief and focused. The results section usually contains a general description followed by their validation. The methods section provides technical details necessary for the independent validation of the methodology, without referring to a chain of bibliographical references. The text of the supplementary material (excluding abstract, methods, references and figure legends) is limited to 6000 – 7000 words. Articles have no more than 12 display items (figures and tables). The results and methods should be divided by topical subheadings; the discussion may contain subheadings at the author’s discretion. If statistical testing was used to analyze the data, the methods section can contain a subsection on statistical analysis. If significant EDA tools are employed, relevant validation can be provided for the novel approach. The experimental tools and the instrumentation used must be explained in a clear schematic preferably with the models (part numbers) mentioned.

In summary, all the new contributions and accomplishments are to be summarized in the 4 to 8 page main paper. The main paper format will be such that it can be understood by not only the expert but also the non-expert (providing the context to someone unfamiliar but wanting to follow progress in the field). All experimental or simulation methods to enable reproducing/validating the results of the paper are in the supplementary material (detailed methods) part.