UPCOMING SSCS WEBINAR

Millimeter Wave Power Amplifiers in Silicon: State of the Art and Future Technology Trend

Presenter: Dr. Hua Wang
Thursday, July 30th, 2020
11:00 AM ET

Abstract: There is a rapidly growing need for high-performance mm-Wave power amplifiers to address mm-Wave 5G and Beyond 5G communication and numerous mission-critical multi-functional DoD applications. These next-generation mm-Wave PAs are often expected to deliver nearly "perfect" performance. They should offer large output power to ensure sufficient link budget, broad bandwidth to support multi-standard communication or frequency reconfigurability/agility, high peak and back-off efficiency for energy saving, and also inherent linearity for Gbit/s complex modulations with minimum or even no digital pre-distortions (DPD). Compared to compound devices, silicon devices often exhibit inferior device-level performance, including power density, gain, efficiency, linearity, and reliability. However, besides their unparalleled fit for system-level integration, silicon technologies offer matured modeling, flexible metal options, and extensive digital control, making them an extremely versatile and attractive platform for design innovations. In this talk, we will review the state of the art of silicon mm-Wave PAs and compare them to recent compound semiconductor PAs. We will then present several recently reported silicon mm-Wave PA design examples that essentially leverage architectural and circuit level innovations to overcome silicon device limitations and radically advance the state
Biography: Hua Wang is an associate professor at the School of Electrical and Computer Engineering (ECE) at Georgia Institute of Technology and the director of Georgia Tech Electronics and Micro-System (GEMS) lab. Prior to that, he worked at Intel Corporation and Skyworks Solutions on mm-Wave integrated circuits and RF frontend modules. He received his M.S. and Ph.D. degrees in electrical engineering from the California Institute of Technology, Pasadena, in 2007 and 2009, respectively.

Dr. Wang is interested in innovating analog, mixed-signal, RF, and mm-Wave integrated circuits and hybrid systems for wireless communication, sensing, and bioelectronics applications. He has authored or co-authored over 170 peer-reviewed journal and conference papers.

Dr. Wang received the DARPA Director's Fellowship Award in 2020, the DARPA Young Faculty Award in 2018, the National Science Foundation CAREER Award in 2015, the IEEE MTT-S Outstanding Young Engineer Award in 2017, the Georgia Tech Sigma Xi Young Faculty Award in 2016, the Georgia Tech ECE Outstanding Junior Faculty Member Award in 2015, and the Lockheed Dean's Excellence in Teaching Award in 2015. He held the Demetrius T. Paris Professorship from 2014 to 2018. His GEMS research group has won multiple academic awards and best paper awards, including the 2019 Marconi Society Paul Baran Young Scholar, the IEEE RFIC Best Student Paper Awards (1st Place in 2014, 2nd Place in 2016, and 2nd Place in 2018), the IEEE CICC Outstanding Student Paper Awards (2015, 2018, and 2019), the IEEE CICC Best Conference Paper Award (2017), the 2016 IEEE Microwave Magazine Best Paper Award, and the IEEE SENSORS Best Live Demo Award (2nd Place in 2016).

Dr. Wang is a Technical Program Committee (TPC) Member for IEEE ISSCC, RFIC, CICC, and BCICTS conferences. He is a Steering Committee Member for IEEE RFIC and CICC. He is the Conference Chair for CICC 2019 and Conference General Chair for CICC 2020. He is a Distinguished Lecturer (DL) for the IEEE Solid-State Circuits Society (SSCS) for the term of 2018-2019. He serves as the Chair of the Atlanta's IEEE CAS/SSCS joint chapter that won the IEEE SSCS Outstanding Chapter Award in 2014.
Solid-State Circuits Society Announces New Executive Director

As many of you already know, the executive offices of Solid State Circuits Society (SSCS) and Power Electronics Society (PELS) have been growing significantly over the past few years, under Mike Kelly's watchful eye. This year, it became clear that IEEE needed to split the offices to allow each to blossom and move to the next level. Mike will be moving on to become the full-time Executive Director of PELS. We thank Mike for his service to our society and wish him well in his new role.

After several months of searching and interviews, IEEE has named Adam Greenberg as the new Executive Director of SSCS. Adam comes to us from IEEE ComSoc, where he served as Technical Activities and Industry Outreach Director since May 2016. He led several new technical initiatives and graduated Future Directions efforts. Adam has also been driving the professional development programs and technical community building within ComSoc. Before joining IEEE, Adam was a business leader at Verizon, AT&T, and IBM.

Reporting to Adam are the following members of the SSCS Executive Office:

- **Abira Altvater**, Technical Community Program Specialist supporting Marketing and Society Communications, Governance, Publications, and Education, DLs and Webinars. Abira is temporarily out of the office; during this time her duties are being assumed by Kelsey Rodriguez.
- **Lauren Caruso**, Administrator supporting Finance and Accounting, Membership and Chapter Services, and Awards and Grants Programs/Processing.
- **Danielle Marinese**, Senior Society Administrator supporting Finance and Accounting, Conferences, and Publications.

Call for Nominations: IEEE TFAs, Herz Staff Award, and Medals & Recognitions

Nominations are due January 15th annually for the IEEE Technical Field Awards and the IEEE Eric Herz Outstanding Staff Member Award and 15 June annually for IEEE Medals and Recognitions.

All are encouraged to submit a nomination for a worthy candidate within their technical fields.
Nomination guidelines, award-specific criteria, and components of a nomination form can be downloaded from https://www.ieee.org/about/awards/information.html and http://www.ieee.org/about/awards/recognitions/recognitions_herz.html. All nominations must be submitted through the online nomination portal.

The IEEE Awards Board (AB) administers the highest medals, awards, and recognition's presented by IEEE. The IEEE Technical Field Awards are awarded for contributions or leadership in specific fields of interest of the IEEE. IEEE Medals embrace significant and broad IEEE interests and purposes.

For more information visit www.ieee.org/awards or e-mail awards@ieee.org.

Call for Nominations: IEEE TFAs, Herz Staff Award, and Medals & Recognitions

2020 IEEE Medal & Recognition Recipients Honored Online

This year, in light of the global health emergency and pervasive travel restrictions, IEEE made the difficult decision not to hold the in-person IEEE Honors Ceremony. Instead, the 23 diverse 2020 IEEE Medal and Recognition recipients will be honored in a series of online promotions.

--Visit the Awards’ Facebook and Twitter social media platforms to see a continuing series of posts highlighting each 2020 recipient.

--Watch videos about each award recipient and learn more about their accomplishments on the Awards Channel on IEEE.TV.

--Flip through the digital 2020 IEEE Awards Booklet.

--The Awards Program is also partnering with the IEEE History Center to promote the 2020 recipients on their Engineering and Technology Wiki. Q&As with these recipients will be posted there in the months to come.

--Plans are being made to recognize the 2020 recipients at the 2021 IEEE Vision, Innovation, and Challenges Summit & Honors Ceremony.

Stay tuned for updates about the online promotions.
2020 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium

We invite you to join us in the 2020 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, to be held as a virtual symposium beginning on Tuesday 4 August 2020 with the plenary Session.

A single registration will allow attendees to access all Microwave Week content, including RFIC, IMS, ARFTG, the 5G Summit, a virtual exhibition, panel sessions, and more. This registration is free to all members of the IEEE Microwave Theory and Technique Society (MTTS). All Microwave Week content will be available on-line beginning on 4 August 2020 and lasting through 30 September 2020.

Our technical program features 95 paper presentations organized within 21 technical sessions. These pre-recorded video presentation will be available to attendees on demand allowing attendees to digest all that our symposium has to offer.

A joint RFIC/IMS live-streamed panel session is scheduled for Wednesday, 5 August 2020 at 11:30 AM PDT. This panel will feature speakers discussing the important topic of "Who needs RF when we can digitize at the antenna interface". This topic is sure to interest both experts and newcomers alike.

Finally, as students of today will be our leaders for tomorrow, the RFIC 2020, in partnership with IMS, offers opportunities for students to enhance their career growth and educational experiences. These include the RFIC student paper contest and the Three-Minute Thesis (3MT®) program.

On behalf of the RFIC Steering, Executive and Technical Committees, we welcome you to join us at the 2020 RFIC Symposium! Please visit the RFIC 2020 website (http://rfic-ieee.org/) for more details and updates.

SSCS Webinars for Young Excellence

Talk Title: To Academia, or to Industry, That is the Question.

Abstract:
You are about to finish graduate school or perhaps a young or seasoned professional, contemplating a career transition. Which is better - a career in academia or industry? What are the pros and cons of one versus the other? How can you start exploring and build up your career accordingly? In this webinar, we will interview Dr. Linus Lu, a professor-turned-industry veteran, and Prof. Kofi Makinwa, an industry veteran-turned-professor, who will share their insights and perspectives from their personal journeys in both academia and industry.
careers. They will also address what triggered their transitions, how they staged their transitions, and offer their crystal ball projections on present and future career prospects in the solid-state-circuits profession.
CONFERENCES

Upcoming 2020 SSCS-Sponsored Conferences

<table>
<thead>
<tr>
<th>Conference</th>
<th>Location</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020 International Symposium on VLSI Technology, Systems, and Applications (VLSI-TSA)</td>
<td>Hsinchu, Taiwan</td>
<td>Rescheduled to August 10th -13th, 2020</td>
</tr>
<tr>
<td>2020 International Symposium on VLSI Design, Automation, and Test (VLSI-DAT)</td>
<td>Hsinchu, Taiwan</td>
<td>Rescheduled to August 10th -13th, 2020</td>
</tr>
<tr>
<td>2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)</td>
<td>Los Angeles, California</td>
<td>Aug 4 - 6, 2020</td>
</tr>
<tr>
<td>2020 IEEE Biomedical Circuits and Systems Conference (BioCAS)</td>
<td>Berlin, Germany</td>
<td>Rescheduled for October 2021</td>
</tr>
<tr>
<td>2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)</td>
<td>Monterey, California</td>
<td>Nov 8 - 11, 2020</td>
</tr>
<tr>
<td>2020 IEEE Asian Solid-State Circuits Conference (A-SSCC)</td>
<td>Hiroshima, Japan</td>
<td>Nov. 9 - 11, 2020</td>
</tr>
</tbody>
</table>

SSCS-Sponsored Conferences: Proceedings

Click the links below to access the latest SSCS-Sponsored conference proceedings.

2019
- [2019 IEEE International Solid-State Circuits Conference (ISSCC)]
- [2019 IEEE Custom Integrated Circuits Conference (CICC)]
- [2019 IEEE Symposium on VLSI Circuits]
- [2019 IEEE 45th European Solid-State Circuits Conference (ESSCIRC)]
- [2019 IEEE Asian Solid-State Circuits Conference (A-SSCC)]
JxCDC Call for Papers: Special Topic on Coupled Oscillators for Non- von Neumann Computation

A call for papers is now open for Special Topic on Coupled Oscillators for Non- von Neumann Computation

Guest Editor:
Chris H. Kim, University of Minnesota, chriskim@umn.edu
Editor-in-Chief:
Azad Naeemi, Georgia Institute of Technology, azad@gatech.edu

Aims and Scope:
When oscillators are loosely coupled to each other, energy transfer between the individual oscillators causes their frequencies to synchronize. The same principle can be found in real life; for instance, metronomes placed on a floating wooden board, pendulums connected via springs, and internal organs following a circadian rhythm. Depending on the strength and time lag of the coupling medium, the phases of the oscillators settle in a way that minimizes the contentions among the oscillating signals. Recent works have shown that the coupled oscillator's natural ability to evolve to the ground state can be exploited to solve computationally intractable problems, such as graph coloring, max cut, factorization, neural networks, associative memories and pattern recognition. Here, the problems are first mapped to a coupled oscillator network by configuring the coupling weights, and the phase information is read out once the ground state is found. While resolving to the ground state, the network may get stuck in a local minima state, which can be avoided by a concept called annealing where random noise is added during the early exploration phase to help the oscillators break out of a local minima state.

Coupled oscillator networks vary in their device implementation as well as in their connectivity. For the devices, experimental demonstrations include CMOS oscillators, emerging device based, such as ferroelectric, spintronic, phase change oscillators, optical oscillators, and quantum devices at cryogenic temperatures. In some cases, oscillators were discrete devices assembled on a board, in other cases, they were monolithically integrated on a chip. In terms of connectivity, fully-connected, nearest-neighbor, hybrid networks (e.g. Chimera), and common node coupling architectures have been demonstrated.

Against this backdrop, the IEEE Journal on Exploratory Computational Devices and Circuits (JXCDC) is pleased to announce the next special issue focusing all aspects of coupled oscillator based system specifically targeted for non-von Neumann computing applications.
Topics of Interest:

- Emerging device (e.g. optical, NEMS, ferroelectric, spintronic, phase change) based coupled oscillator systems
- CMOS based coupled oscillator systems
- Variability and reliability effects in coupled oscillator systems
- Probabilistic behavior and operation under noise
- Security properties of coupled oscillator systems
- Weight programming and phase readout techniques
- Annealing techniques for coupled oscillator systems
- Network connectivity and architecture considerations
- Testing, parameter turning, and measurements aspects
- Oscillator Neural Networks (ONNs)
- Associative memories based on oscillators
- Techniques for mapping large problems onto coupled oscillator systems
- Graph embedding algorithms for locally connected coupled oscillator systems
- NP-hard and NP-complete problem case studies
- Comparison with quantum computers and software based approaches (e.g. simulated annealing)
- Literature review and historical trends on coupled oscillator systems

Important Dates:

- Open for Submission: July 10th, 2020
- Submission Deadline: September 31st, 2020
- First Notification: October 21st, 2020
- Revision Submission: November 15th, 2020
- Final Decision: December 15th, 2020
- Online Issue Publication: January 1st, 2021

Submission Guidelines:

The IEEE Journal on Exploratory Solid-State Computational Devices and Circuits (JXCDC) IS AN OPEN ACCESS ONLY PUBLICATION:

Charge for Authors: $1,350 USD per paper.

Paper submissions must be done through the ScholarOne Manuscripts website: https://mc.manuscriptcentral.com/jxcdc

Guidelines for papers and supplementary materials, as well as a paper template, are provided at this [website](https://mc.manuscriptcentral.com/jxcdc).

JxCDC is sponsored by:

- Solid-State Circuits Society
- Magnetics Society
- Circuits & Systems Society
- Computer Society
- Council on Electronic Design Automation
- Council on Superconductivity
- Nanotechnology Council
- Computer Society
- Electron Devices Society
The latest in SSCS Flagship Publications...

IEEE Journal of Solid-State Circuits
Vol. 55, Issue 5, May 2020
Special Issue on the 2019 RFIC Symposium

Introduction to the Special Section on the 2019 RFIC Symposium
Hongtao Xu

Li-Xuan Chuo ; Zhen Feng ; Yejoong Kim ; Nikolaos Chiotellis ; Makoto Yasuda ; Satoru Miyoshi ; Masaru Kawaminami ; Anthony Grbic ; David Wentzloff ; David Blaauw ; Hun-Seok Kim

A Fully Passive RF Front End With 13-dB Gain Exploiting Implicit Capacitive Stacking in a Bottom-Plate N-Path Filter/Mixer
Vijaya Kumar Purushothaman ; Eric A. M. Klumperink ; Berta Trullas Clavera ; Bram Nauta

An 802.11ba-Based Wake-Up Radio Receiver With Wi-Fi Transceiver Integration
Renzhi Liu ; Asma Beevi K. T. ; Richard Dorrance ; Deepak Dasalukunte ; Vinod Krishem ; Mario A. Santana Lopez ; Alexander W. Min ; Shahrnaz Azizi ; Minyoung Park ; Brent R. Carlton

Design and Analysis of Enhanced Mixer-First Receivers Achieving 40-dB/decade RF Selectivity
Sashank Krishnamurthy ; Ali M. Niknejad

A 24.5-43.5-GHz Ultra-Compact CMOS Receiver Front End With Calibration-Free Instantaneous Full-Band Image Rejection for Multiband 5G Massive MIMO
Min-Yu Huang ; Taiyun Chi ; Sensen Li ; Tzu-Yuan Huang ; Hua Wang

Multi-Mode 60-GHz Radar Transmitter SoC in 45-nm SOI CMOS
Wooram Lee ; Tolga Dinc ; Alberto Valdes-Garcia

A Code-Domain RF Signal Processing Front End With High Self-Interference Rejection and Power Handling for Simultaneous Transmit and Receive
Hussam Alshammary ; Cameron Hill ; Ahmed Hamza ; James F. Buckwalter

A Coupler-Based Differential mm-Wave Doherty Power Amplifier With Impedance Inverting and Scaling Baluns
Huy Thong Nguyen ; Hua Wang

A Wideband Low-Power Cryogenic CMOS Circulator for Quantum Applications
Andrea Ruffino ; Yatao Peng ; Fabio Sebastianio ; Masoud Babaie ; Edoardo Charbon

A 1.7-dB Minimum NF, 22-32-GHz Low-Noise Feedback Amplifier With Multistage Noise Matching in 22-nm FD-SOI CMOS
Bolun Cui ; John R. Long
A 39-GHz 64-Element Phased-Array Transceiver With Built-In Phase and Amplitude Calibrations for Large-Array 5G NR in 65-nm CMOS
Yun Wang ; Rui Wu ; Jian Pang ; Dongwon You ; Ashbir Aviat Fadila ; Rattanan Saengchan ; Xi Fu ; Daiki Matsumoto ; Takeshi Nakamura ; Ryo Kubozoe ; Masaru Kawabuchi ; Bangan Liu ; Haosheng Zhang ; Junjun Qiu ; Hanli Liu ; Naoki Oshima ; Keiichi Motoi ; Shinichi Horii ; Kazuaki Kunihiro ; Tomoya Kaneko ; Atsushi Shirane ; Kenichi Okada

Code-Domain Multiplexing for Shared IF/LO Interfaces in Millimeter-Wave MIMO Arrays
Manoj Johnson ; Armanag Dasciurcu ; Kai Zhan ; Arman Galigołu ; Naresh Kumar Adepu ; Sanket Jain ; Harish Krishnaswamy ; Arun S. Natarajan

A 50-Gb/s PAM4 Si-Photonic Transmitter With Digital-Assisted Distributed Driver and Integrated CDR in 40-nm CMOS
Qiwen Liao ; Nan Qi ; Miaofeng Li ; Shang Hu ; Jian He ; Bozhi Yin ; Jingbo Shi ; Jian Liu ; Patrick Yin Chiang ; Xi Xiao ; Nanjian Wu

A 20-32-GHz Quadrature Digital Transmitter Using Synthesized Impedance Variation Compensation
Huizhen Jenny Qian ; Yiyang Shu ; Jie Zhou ; Xun Luo

Highly Integrated Guidewire Ultrasound Imaging System-on-a-Chip
Jaemyung Lim ; Coskun Tekes ; Evren F. Arkan ; Ahmad Rezvani-Tabar ; F. Levent Degertekin ; Maysam Ghovanloo

A High-Voltage Dual-Input Buck Converter Achieving 52.9% Maximum End-to-End Efficiency for Triboelectric Energy-Harvesting Applications
Inho Park ; Junyoung Maeng ; Minseob Shim ; Junwon Jeong ; Chulwoo Kim

An OTA-Less Second-Order VCO-Based CT ΔΣ Modulator Using an Inherent Passive Integrator and Capacitive Feedback
Shaolan Li ; David Z. Pan ; Nan Sun

A 102.2-dB, 181.1-dB FoM Extended Counting Analog-to-Digital Converter With Capacitor Scaling
Saqib Mohamad ; Jie Yuan ; Amine Bermak

An 8.2- μ W 0.14-mm2 16-Channel CDMA-Like Capacitance-to-Digital Converter
Yuxuan Luo ; Yida Li ; Aaron Voon-Yew Thean ; Chun-Huat Heng

A Time-Interleaved Resonant Voltage Mode Wireless Power Receiver With Delay-Based Tracking Loops for Implantable Medical Devices
Se-Un Shin ; Minseong Choi ; Seungchul Jung ; Hyung-Min Lee ; Gyu-Hyeong Cho

A Wireless Power and Data Transfer Receiver Achieving 75.4% Effective Power Conversion Efficiency and Supporting 0.1% Modulation Depth for ASK Demodulation
Dawei Ye ; Yu Wang ; Yingfei Xiang ; Lianjiang Lyu ; Hao Min ; C.-J. Richard Shi

Mixer-First MIMO Receiver With Reconfigurable Multi-Port Decoupling and Matching
Charley Wilson ; Jacob Dean ; Brian A. Floyd

A 30-GHz CMOS SOI Outphasing Power Amplifier With Current Mode Combining for High Backoff Efficiency and Constant Envelope Operation
Kang Ning ; Yihao Fang ; Navid Hosseinzadeh ; James F. Buckwalter

TG-SPP: A One-Transmission-Gate Short-Path Padding for Wide-Voltage-Range Resilient Circuits in 28-nm CMOS
Weiwei Shan ; Wentao Dai ; Chuan Zhang ; Hao Cai ; Peiye Liu ; Jun Yang ; Longxing Shi
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 0.58-to-0.9-V Input 0.53-V Output 2.4-μW Current-Feedback Low-Dropout Regulator With 99.8% Current Efficiency</td>
<td>Ziyu Wang ; Shahriar Mirabbasi</td>
</tr>
<tr>
<td>A Cryogenic CMOS Parametric Amplifier</td>
<td>Mohammadreza Mehrpoo ; Fabio Sebastiano ; Edoardo Charbon ; Masoud Babaie</td>
</tr>
<tr>
<td>A 117-dB In-Band CMRR 98.5-dB SNR Capacitance-to-Digital Converter for Sub-nm Displacement Sensing With an Electrically Floating Target</td>
<td>Hui Jiang ; Samira Amani ; Johan G. Vogel ; Saleh Heiday Shalmany ; Stoyan N ihtianov</td>
</tr>
<tr>
<td>A 2.6 TOPS/W 16-Bit Fixed-Point Convolutional Neural Network Learning Processor in 65-nm CMOS</td>
<td>Shihui Yin ; Jae-Sun Seo</td>
</tr>
<tr>
<td>A 1-V 8.1-μW PPG-Recording Front-End With > 92-dB DR Using Light-to-Digital Conversion With Signal-Aware DC Subtraction and Ambient Light Removal</td>
<td>Fatemeh Marefat ; Reza Erfani ; Pedram Mohseni</td>
</tr>
<tr>
<td>Novel Pulse-Based Analog Divider With Digital Output</td>
<td>Kuan-Hung Chen ; Tse-An Chen ; Chia-Ling Wei</td>
</tr>
<tr>
<td>Secondary Side-Channel Wireline Communication Using Transmitter Clock Frequency Modulation</td>
<td>Yi Fan Zhang ; Joshua Liang ; Shayan Shahramian ; Behzad Dehlaghi ; Ryan Bespalko ; Michael O’Farrel ; Dustin Dunwell ; Davide Tonietto ; Anthony Chan Carusone</td>
</tr>
<tr>
<td>A Coarse-Fine VCO-ADC for MEMS Microphones With Sampling Synchronization by Data Scrambling</td>
<td>Andres Quintero ; Cesare Buffa ; Carlos Perez ; Fernando Cardes ; Dietmar Straeussnig ; Andreas Wiesbauer ; Luis Hernandez</td>
</tr>
<tr>
<td>A Fully-Synthesizable Fractional-N Injection-Locked PLL for Digital Clocking with Triangle/Sawtooth Spread-Spectrum Modulation Capability in 5-nm CMOS</td>
<td>Bangan Liu ; Yuncheng Zhang ; Junjun Qiu ; Hongye Huang ; Zheng Sun ; Dingxin Xu ; Haosheng Zhang ; Yun Wang ; Jian Pang ; Zheng Li ; Xi Fu ; Atsushi Shirane ; Hitoshi Kurosu ; Yoshinori Nakane ; Shunichiro Masaki ; Kenichi Okada</td>
</tr>
<tr>
<td>A 3.2-GHz Quadrature Error Corrector for DRAM Transmitters, Using Replica Serializers and Pulse-Shrinking Delay Lines</td>
<td>Hyeongjun Ko ; Changho Hyun ; Joo-Hyung Chae ; Gi-Moon Hong ; Suhwan Kim</td>
</tr>
<tr>
<td>Design and Packaging of a Robust 120-GHz OOK Receiver Used in a Short-Range Dielectric Fiber Link</td>
<td>Simon Ooms ; Patrick Reynaert</td>
</tr>
<tr>
<td>610-GHz Fourth Harmonic Signal Reactively Generated in a CMOS Voltage Controlled Oscillator Using Differentially Pumped Varactors</td>
<td>Zhe Chen ; Zhiyu Chen ; Wooyool Choi ; Kenneth K. O.</td>
</tr>
<tr>
<td>An Implantable Body Channel Communication System With 3.7-pJ/b Reception and 34-pJ/b Transmission Efficiencies</td>
<td>Beomjin Yuk ; Byeongsool Kim ; Sanggeon Park ; Yeewool Huh ; Joonsung Bae</td>
</tr>
<tr>
<td>Design of a Boost DC-DC Converter With 82-mV Startup Voltage and Fully Built-in Startup Circuits for Harvesting Thermolectric Energy</td>
<td>Jhe-Jia Jhang ; Hung-Hsien Wu ; Tien Hsu ; Chia-Ling Wei</td>
</tr>
<tr>
<td>A 2T-MONOS Embedded Flash Macro With 65-nm SOTB Technology Achieving 0.15-pJ/bit Read Energy With 80-MHz Access for IoT Applications</td>
<td>Ken Matsubara ; Tsutomu Nagasawa ; Yoshinobu Kaneda ; Hidenori Mitani ; Takashi Iwase ; Yasunobu Aoki ; Kohei Hashimoto ; Toshiaki Morioka ; Keichi Maekawa ; Takashi Ito ; Hiroyuki Kondo ; Takashi Kono</td>
</tr>
</tbody>
</table>
Nonvolatile Spintronic Memory Cells for Neural Networks
Andrew W. Stephan ; Qiuwen Lou ; Michael T. Niemier ; Xiaobo Sharon Hu ; Steven J. Koester

Benchmarking Delay and Energy of Neural Inference Circuits.
Dmitri E. Nikonov ; Ian A. Young

Energy-Efficient Convolutional Neural Network Based on Cellular Neural Network Using Beyond-CMOS Technologies
Chenyun Pan ; Qiuwen Lou ; Michael Niemier ; Sharon Hu ; Azad Naeemi

Ultracompact and Low-Power Logic Circuits via Workfunction Engineering
Talha F. Canan ; Savas Kaya ; Avinash Karanth ; Ahmed Louri

Early Access Articles

Accurate Inference with Inaccurate RRAM Devices: A Joint Algorithm-Design Solution
Gouranga Charan ; Abinash Mohanty ; Xiaocong Du ; Gokul Krishnan ; Rajiv V. Joshi ; Yu Cao

A DNA Read Alignment Accelerator based on Computational RAM
Zamshed I. Chowdhury ; Masoud Zabihi ; S. Karen Khatamifard ; Zhengyang Zhao ; Salonik Resch ; Meisam Razaviyayn ; Jian-Ping Wang ; Sachin S. Sapatnekar ; Ulya R. Karpuzcu

Analyzing the Effects of Interconnect Parasitics in the STT CRAM In-memory Computational Platform
Masoud Zabihi ; Arvind K. Sharma ; Meghna G. Mankalale ; Zamshed I. Chowdhury ; Zhengyang Zhao ; Salonik Resch ; Ulya R. Karpuzcu ; Jian-Ping Wang ; Sachin S. Sapatnekar

Short-Term Long-Term Compute-In-Memory Architecture: A Hybrid Spin/CMOS Approach Supporting Intrinsic Consolidation
Shadi Sheikhfaal ; Ronald F. DeMara

Energy-Efficient Moderate Precision Time-Domain Mixed-Signal Vector-by-Matrix Multiplier Exploiting 1T-1R Arrays
Shubham Sahay ; Mohammad Bavandpour ; Mohammad Reza Mahmoodi ; Dmitri Strukov

JxCDC papers listed in order of popularity can be found online HERE.

For paper submission details, click HERE.

For Society news and happenings, check out the Winter 2020 issue of the Solid-State Circuits Magazine.
e-newsletter. If you'd like to unsubscribe, please follow the "UNSUBSCRIBE" link below.

CLICK HERE TO VISIT OUR WEBSITE

CONNECT WITH SSCS: