SSCS May Technical Webinar: Analog Interface Circuits for Electro-Chemical and Molecular Sensing, Presented by: Carolina Lopez

27 June @ 1:00 pm2:30 pm EDT
Loading Events

Abstract: Accurate measurement of certain chemicals and biological substances is essential for health care and biomanufacturing. Electrochemical sensing methods are particularly useful for this purpose because they are cost-effective, can be made very small, and provide real-time data. Technologies such as pH and ion-sensitive sensors that are integrated into standard CMOS platforms (the technology used for constructing integrated circuits) have shown to be effective. For instance, large arrays of Ion-Sensitive Field-Effect Transistors (ISFET) have been instrumental in DNA sequencing. Looking ahead to advanced DNA sequencing and protein studies, innovative techniques involving nanopores are being developed for efficient, high-throughput sensing of molecules. This presentation will explore the basic principles of electrochemical sensing, with a special focus on the design of the analog circuits involved. It will provide an overview of the latest circuit design methods used in ISFET-based sensors and will conclude by discussing specific challenges in designing circuits for nanopore-based molecular sensing.

Biography: Carolina Mora Lopez received her Ph.D. degree in Electrical Engineering in 2012 from the KU Leuven, Belgium, in collaboration with imec, Belgium. From 2012 to 2018, she worked at imec as a researcher and analog designer focused on interfaces for neural-sensing applications. She is currently the Scientific Director and team leader of the circuits for neural interfaces team in imec. Her research interests include analog and mixed-signal circuit design for sensor, bioelectronics and neural interfaces. Carolina is a senior IEEE member and serves on the technical program committee of the VLSI Symposium, ISSCC and ESSCIRC conferences.

Registration Link:


27 June
1:00 pm – 2:30 pm EDT
Event Category:




Aeisha VanBuskirk